Tetracyclic harmonic graphs
Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p2 is given
We classify tetravalent -half-arc-transitive graphs of order , where and , are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.
The 1, 2, 3-Conjecture states that the edges of a graph without isolated edges can be labeled from {1, 2, 3} so that the sums of labels at adjacent vertices are distinct. The 1, 2-Conjecture states that if vertices also receive labels and the vertex label is added to the sum of its incident edge labels, then adjacent vertices can be distinguished using only {1, 2}. We show that various configurations cannot occur in minimal counterexamples to these conjectures. Discharging then confirms the conjectures...
E. Prisner in his book Graph Dynamics defines the -path-step operator on the class of finite graphs. The -path-step operator (for a positive integer ) is the operator which to every finite graph assigns the graph which has the same vertex set as and in which two vertices are adjacent if and only if there exists a path of length in connecting them. In the paper the trees and the unicyclic graphs fixed in the operator are studied.
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G). In this paper,...