Hamiltonicity of -traceable graphs.
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , where Km0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula...
Let be the following algorithmic problem: Given a finite simplicial complex of dimension at most , does there exist a (piecewise linear) embedding of into ? Known results easily imply polynomiality of (; the case is graph planarity) and of for all . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that and are undecidable for each . Our main result is NP-hardness of and, more generally, of for all , with...
A total-colored path is total rainbow if both its edges and internal vertices have distinct colors. The total rainbow connection number of a connected graph G, denoted by trc(G), is the smallest number of colors that are needed in a total-coloring of G in order to make G total rainbow connected, that is, any two vertices of G are connected by a total rainbow path. In this paper, we study the computational complexity of total rainbow connection of graphs. We show that deciding whether a given total-coloring...
The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras...
Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest...
A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is o−1-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least n−1 in G. A block-chain is a graph whose block graph is a path, i.e., it is either a P1, P2, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks....