A partition of R in two homogeneous and homeomorphic parts
A special relational structure, called genealogical tree, is introduced; its social interpretation and geometrical realizations are discussed. The numbers of all abstract genealogical trees with exactly n+1 nodes and k leaves is found by means of enumeration of code words. For each n, the form a partition of the n-th Catalan numer Cₙ, that means .
Let τ(G) denote the number of vertices in a longest path of the graph G and let k₁ and k₂ be positive integers such that τ(G) = k₁ + k₂. The question at hand is whether the vertex set V(G) can be partitioned into two subsets V₁ and V₂ such that τ(G[V₁] ) ≤ k₁ and τ(G[V₂] ) ≤ k₂. We show that several classes of graphs have this partition property.
We study the cohomology ring of the Grassmannian G of isotropic n-subspaces of a complex 2m-dimensional vector space, endowed with a nondegenerate orthogonal form (here 1 ≤ n < m). We state and prove a formula giving the Schubert class decomposition of the cohomology products in H*(G) of general Schubert classes by "special Schubert classes", i.e. the Chern classes of the dual of the tautological vector bundle of rank n on G. We discuss some related properties of reduced decompositions of "barred...
We study an uncapacitated facility location model where customers are served by facilities of level one, then each level one facility that is opened must be assigned to an opened facility of level two. We identify a polynomially solvable case, and study some valid inequalities and facets of the associated polytope.
The aim of this paper is to show a polynomial algorithm for the problem minimum directed sumcut for a class of series parallel digraphs. The method uses the recursive structure of parallel compositions in order to define a dominating set of orders. Then, the optimal order is easily reached by minimizing the directed sumcut. It is also shown that this approach cannot be applied in two more general classes of series parallel digraphs.
MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22The fractional calculus (FC) is an area of intensive research and development. In a previous paper and poster we tried to exhibit its recent state, surveying the period of 1966-2010. The poster accompanying the present note illustrates the major contributions during the period 1695-1970, the "old history" of FC.
We introduce the concept of neighborhood systems as a generalization of directed, reflexive graphs and show that the prime factorization of neighborhood systems with respect to the the direct product is unique under the condition that they satisfy an appropriate notion of thinness.