Displaying 641 – 660 of 849

Showing per page

The Wiener number of powers of the Mycielskian

Rangaswami Balakrishnan, S. Francis Raj (2010)

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1 / 2 u , v V ( G ) d ( u , v ) , d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W ( μ ( S k ) ) W ( μ ( T k ) ) W ( μ ( P k ) ) , where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ ( G k ) .

Théorie des magmoïdes

A. Arnold, M. Dauchet (1979)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Théorie des magmoïdes (I)

A. Arnold, M. Dauchet (1978)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Thom polynomials and Schur functions: the singularities I 2 , 2 ( - )

Piotr Pragacz (2007)

Annales de l’institut Fourier

We give the Thom polynomials for the singularities I 2 , 2 associated with maps ( , 0 ) ( + k , 0 ) with parameter k 0 . Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.

Thom polynomials and Schur functions: the singularities I I I 2 , 3 ( - )

Özer Öztürk (2010)

Annales Polonici Mathematici

We give a closed formula for the Thom polynomials of the singularities I I I 2 , 3 ( - ) in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.

Thomas Harriot on Combinations

Ian Maclean (2005)

Revue d'histoire des mathématiques

Thomas Harriot (1560?–1621) is known today as an innovative mathematician and a natural philosopher with wide intellectual horizons. This paper will look at his interest in combinations in three contexts: language (anagrams), natural philosophy (the question of atomism) and mathematics (number theory), in order to assess where to situate him in respect of three current historiographical debates: 1) whether there existed in the late Renaissance two opposed mentalities, the occult and the scientific;...

Currently displaying 641 – 660 of 849