A binomial coefficient identity associated to a conjecture of Beukers.
We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.
Let be a graph with vertex set , and let be an integer. A subset is called a -dominating set if every vertex has at least neighbors in . The -domination number of is the minimum cardinality of a -dominating set in . If is a graph with minimum degree , then we prove that In addition, we present a characterization of a special class of graphs attaining equality in this inequality.
Given graphs A, B and C for which A×C ≅ B×C, it is not generally true that A ≅ B. However, it is known that A×C ≅ B×C implies A ≅ B provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then A×C ≅ B×C implies A ≅ B if and only if no component of B admits an involution that interchanges its partite sets.
T. Brown proved that whenever we color (the set of finite subsets of natural numbers) with finitely many colors, we find a monochromatic structure, called an arithmetic copy of an -forest. In this paper we show a canonical extension of this theorem; i.eẇhenever we color with arbitrarily many colors, we find a canonically colored arithmetic copy of an -forest. The five types of the canonical coloring are determined. This solves a problem of T. Brown.
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the ice pile model(n), a generalization of the sand pile model(n). More precisely, for any fixed integer k, we show that the negative lexicographic ordering naturally identifies a tree structure on the lattice (n): this lets us design an algorithm which generates all the ice piles of (n) in amortized time O(1) and in space O().
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the ice pile model(n), a generalization of the sand pile model(n). More precisely, for any fixed integer k, we show that the negative lexicographic ordering naturally identifies a tree structure on the lattice (n): this lets us design an algorithm which generates all the ice piles of (n) in amortized time O(1) and in space O().