Semimatroids and their Tutte polynomials.
MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35We introduce sparse linear underdetermined systems with embedded network structure. Their structure is inherited from the non-homogeneous network ow programming problems with nodes of variable intensities. One of the new applications of the researched underdetermined systems is the sensor location problem (SLP) for a multigraph. That is the location of the minimum number of sensors in the nodes of the multigraph, in order to determine the arcs ow...
2000 Mathematics Subject Classification: 05C35.Let Γ(M ) where M ⊂ V (G) be the set of all vertices of the graph G adjacent to any vertex of M. If v1, . . . , vr is a vertex sequence in G such that Γ(v1, . . . , vr ) = ∅ and vi is a maximal degree vertex in Γ(v1, . . . , vi−1), we prove that e(G) ≤ e(K(p1, . . . , pr)) where K(p1, . . . , pr ) is the complete r-partite graph with pi = |Γ(v1, . . . , vi−1) Γ(vi )|.
Étant donnés un système de racines d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de .