Displaying 1341 – 1360 of 8549

Showing per page

Binary segmentation and Bonferroni-type bounds

Michal Černý (2011)

Kybernetika

We introduce the function Z ( x ; ξ , ν ) : = - x ϕ ( t - ξ ) · Φ ( ν t ) d t , where ϕ and Φ are the pdf and cdf of N ( 0 , 1 ) , respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables...

Binomial residues

Eduardo Cattani, Alicia Dickenstein, Bernd Sturmfels (2002)

Annales de l’institut Fourier

A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of A -hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with A .

Binomial sums via Bailey's cubic transformation

Wenchang Chu (2023)

Czechoslovak Mathematical Journal

By employing one of the cubic transformations (due to W. N. Bailey (1928)) for the 3 F 2 ( x ) -series, we examine a class of 3 F 2 ( 4 ) -series. Several closed formulae are established by means of differentiation, integration and contiguous relations. As applications, some remarkable binomial sums are explicitly evaluated, including one proposed recently as an open problem.

Bipartite graphs that are not circle graphs

André Bouchet (1999)

Annales de l'institut Fourier

The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in GF ( 2 ) .At the end of this short note I briefly recall the work of François Jaeger on circle graphs.

Bipartite knots

Sergei Duzhin, Mikhail Shkolnikov (2014)

Fundamenta Mathematicae

We give a solution to a part of Problem 1.60 in Kirby's list of open problems in topology, thus answering in the positive the question raised in 1987 by J. Przytycki.

Bipartition Polynomials, the Ising Model, and Domination in Graphs

Markus Dod, Tomer Kotek, James Preen, Peter Tittmann (2015)

Discussiones Mathematicae Graph Theory

This paper introduces a trivariate graph polynomial that is a common generalization of the domination polynomial, the Ising polynomial, the matching polynomial, and the cut polynomial of a graph. This new graph polynomial, called the bipartition polynomial, permits a variety of interesting representations, for instance as a sum ranging over all spanning forests. As a consequence, the bipartition polynomial is a powerful tool for proving properties of other graph polynomials and graph invariants....

Currently displaying 1341 – 1360 of 8549