W-graphs of representations of symmetric groups
Let be a finite lattice with a least element 0. is an annihilating-ideal graph of in which the vertex set is the set of all nontrivial ideals of , and two distinct vertices and are adjacent if and only if . We completely characterize all finite lattices whose line graph associated to an annihilating-ideal graph, denoted by , is a planar or projective graph.
By a sign pattern (matrix) we mean an array whose entries are from the set . The sign patterns for which every real matrix with sign pattern has the property that its inverse has sign pattern are characterized. Sign patterns for which some real matrix with sign pattern has that property are investigated. Some fundamental results as well as constructions concerning such sign pattern matrices are provided. The relation between these sign patterns and the sign patterns of orthogonal matrices...
We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.
Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their...
The Wiener index of a connected graph G, denoted by W(G), is defined as . Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as . The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product , where is the complete multipartite graph with partite sets of sizes...
The Wiener index, W, is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of Δ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W(S) = W(L(L(S)) exist only for 4 ≤ Δ ≤ 6. Infinite families of generalized stars with this property...