Chess tableaux.
Several authors gave various factorizations of the Fibonacci and Lucas numbers. The relations are derived with the help of connections between determinants of tridiagonal matrices and the Fibonacci and Lucas numbers using the Chebyshev polynomials. In this paper some results on factorizations of the Fibonacci–like numbers and their squares are given. We find the factorizations using the circulant matrices, their determinants and eigenvalues.
Ces notes ont pour but de rassembler les différents résultats de combinatoire des mots relatifs au billard polygonal et polyédral. On commence par rappeler quelques notions de combinatoire, puis on définit le billard, les notions utiles en dynamique et le codage de l’application. On énonce alors les résultats connus en dimension deux puis trois.
The existence and uniqueness (up to equivalence defined below) of code loops was first established by R. Griess in [3]. Nevertheless, the explicit construction of code loops remained open until T. Hsu introduced the notion of symplectic cubic spaces and their Frattini extensions, and pointed out how the construction of code loops followed from the (purely combinatorial) result of O. Chein and E. Goodaire contained in [2]. Within this paper, we focus on their combinatorial construction and prove...