Page 1 Next

Displaying 1 – 20 of 178

Showing per page

Calcolo della funzione di partizione di Kostant

Stefano Capparelli (2003)

Bollettino dell'Unione Matematica Italiana

Forniamo un calcolo esplicito della funzione di partizione di Kostant per algebre di Lie complesse di rango 2 . La tecnica principale consiste nella riduzione a casi più semplici ed all'uso di funzioni generatrici.

Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts

Eszter Horváth, Branimir Šešelja, Andreja Tepavčević (2013)

Open Mathematics

We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.

Cardinality of Rauzy classes

Vincent Delecroix (2013)

Annales de l’institut Fourier

Rauzy classes form a partition of the set of irreducible permutations. They were introduced as part of a renormalization algorithm for interval exchange transformations. We prove an explicit formula for the cardinality of each Rauzy class. Our proof uses a geometric interpretation of permutations and Rauzy classes in terms of translation surfaces and moduli spaces.

Currently displaying 1 – 20 of 178

Page 1 Next