Discrete excursions.
Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.
L'operatore di differenze multivariate è utilizzato per stabilire varie formule di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame con le identità del «termine costante».
We obtain new q-series identities that have interesting interpretations in terms of divisors and partitions. We present a proof of a theorem of Z. B. Wang, R. Fokkink, and W. Fokkink, which follows as a corollary to our main q-series identity, and offer a similar result.
Let G₁ and G₂ be disjoint copies of a graph G, and let f:V(G₁) → V(G₂) be a function. Then a functigraph C(G,f) = (V,E) has the vertex set V = V(G₁) ∪ V(G₂) and the edge set E = E(G₁) ∪ E(G₂) ∪ {uv | u ∈ V(G₁), v ∈ V(G₂),v = f(u)}. A functigraph is a generalization of a permutation graph (also known as a generalized prism) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G) denote the domination number of G. It is readily seen that γ(G) ≤ γ(C(G,f))...
It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.
The Gould-Hsu (1973) inverse series relations have been systematically applied to the research of hypergeometric identities. Their duplicate version is established and used to demonstrate several terminating -summation formulas. Further hypergeometric evaluations with the same variable are obtained through recurrence relations.