Some classes of numbers and derivatives.
We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here ξ < ε₀ and the notion of largeness is in the sense of Hardy hierarchy.
Let p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 for p3(n) by using some theta function identities. For example, we prove that for n ≥ 0, p3 (243n + 233) ≡ p3 (729n + 638) ≡ 0 (mod 310).
Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that , where the central trinomial coefficient Tₙ is the constant term in the expansion of . We also prove three congruences modulo p³ conjectured by Sun, one of which is . In addition, we get some new combinatorial identities.
Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.