Displaying 941 – 960 of 2016

Showing per page

Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case

Michael M. Erlihson, Boris L. Granovsky (2008)

Annales de l'I.H.P. Probabilités et statistiques

We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, ak∼Ckp−1, k→∞, p>0, where C is a positive constant. The measures considered are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition...

Linear differential equations and multiple zeta values. I. Zeta(2)

Michał Zakrzewski, Henryk Żołądek (2010)

Fundamenta Mathematicae

Certain generating fuctions for multiple zeta values are expressed as values at some point of solutions of linear meromorphic differential equations. We apply asymptotic expansion methods (like the WKB method and the Stokes operators) to solutions of these equations. In this way we give a new proof of the Euler formula ζ(2) = π²/6. In further papers we plan to apply this method to study some third order hypergeometric equation related to ζ(3).

M 2 -rank differences for partitions without repeated odd parts

Jeremy Lovejoy, Robert Osburn (2009)

Journal de Théorie des Nombres de Bordeaux

We prove formulas for the generating functions for M 2 -rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.

Currently displaying 941 – 960 of 2016