Page 1

Displaying 1 – 1 of 1

Showing per page

Minimal trees and monophonic convexity

Jose Cáceres, Ortrud R. Oellermann, M. L. Puertas (2012)

Discussiones Mathematicae Graph Theory

Let V be a finite set and 𝓜 a collection of subsets of V. Then 𝓜 is an alignment of V if and only if 𝓜 is closed under taking intersections and contains both V and the empty set. If 𝓜 is an alignment of V, then the elements of 𝓜 are called convex sets and the pair (V,𝓜 ) is called an alignment or a convexity. If S ⊆ V, then the convex hull of S is the smallest convex set that contains S. Suppose X ∈ ℳ. Then x ∈ X is an extreme point for X if X∖{x} ∈ ℳ. A convex geometry on a finite set is...

Currently displaying 1 – 1 of 1

Page 1