The search session has expired. Please query the service again.
An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ {4,6}, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ {4,5}, every path P with |V(P)|...
The recently announced Strong Perfect Graph Theorem states that the class of perfect graphs coincides with the class of graphs containing no induced odd cycle of length at least 5 or the complement of such a cycle. A graph in this second class is called Berge. A bull is a graph with five vertices and five edges . A graph is bull-reducible if no vertex is in two bulls. In this paper we give a simple proof that every bull-reducible Berge graph is perfect. Although this result follows directly from...
The recently announced Strong Perfect Graph Theorem states that the class of
perfect graphs coincides with the class of graphs containing no induced
odd cycle of length at least 5 or the complement of such a cycle. A
graph in this second class is called Berge. A bull is a graph with five
vertices x, a, b, c, d and five edges xa, xb, ab, ad, bc. A graph is
bull-reducible if no vertex is in two bulls. In this paper we give a
simple proof that every bull-reducible Berge graph is perfect. Although
this...
Currently displaying 1 –
3 of
3