Displaying 81 – 100 of 428

Showing per page

Connected resolvability of graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Czechoslovak Mathematical Journal

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolving set for G containing a minimum number of vertices is a basis for G . The dimension dim ( G ) is the number of vertices in a basis for G . A resolving set W of G is connected if the subgraph...

Coxeter polynomials of Salem trees

Charalampos A. Evripidou (2015)

Colloquium Mathematicae

We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove that if z is a root of multiplicities m , . . . , m k for the Coxeter polynomials of the trees , . . . , k respectively, then z is a root for the Coxeter polynomial of their join, of multiplicity at least m i n m - m , . . . , m - m k where m = m + + m k .

Destroying symmetry by orienting edges: complete graphs and complete bigraphs

Frank Harary, Michael S. Jacobson (2001)

Discussiones Mathematicae Graph Theory

Our purpose is to introduce the concept of determining the smallest number of edges of a graph which can be oriented so that the resulting mixed graph has the trivial automorphism group. We find that this number for complete graphs is related to the number of identity oriented trees. For complete bipartite graphs K s , t , s ≤ t, this number does not always exist. We determine for s ≤ 4 the values of t for which this number does exist.

Currently displaying 81 – 100 of 428