Congruence classes of orientable 2-cell embeddings of bouquets of circles and dipoles.
For an ordered set of vertices and a vertex in a connected graph , the representation of with respect to is the -vector = (, , where represents the distance between the vertices and . The set is a resolving set for if distinct vertices of have distinct representations with respect to . A resolving set for containing a minimum number of vertices is a basis for . The dimension is the number of vertices in a basis for . A resolving set of is connected if the subgraph...
We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove that if z is a root of multiplicities for the Coxeter polynomials of the trees respectively, then z is a root for the Coxeter polynomial of their join, of multiplicity at least where .
Our purpose is to introduce the concept of determining the smallest number of edges of a graph which can be oriented so that the resulting mixed graph has the trivial automorphism group. We find that this number for complete graphs is related to the number of identity oriented trees. For complete bipartite graphs , s ≤ t, this number does not always exist. We determine for s ≤ 4 the values of t for which this number does exist.