Enumeration of hamiltonian paths in Caley diagrams.
Let be the least number for which there exists a simple graph with vertices having precisely spanning trees. Similarly, define as the least number for which there exists a simple graph with edges having precisely spanning trees. As an -cycle has exactly spanning trees, it follows that . In this paper, we show that and if and only if , which is a subset of Euler’s idoneal numbers. Moreover, if and we show that and This improves some previously estabilished bounds.