Block-closed subgraphs and q-partitions of graphs
For the notion of neighbor-connectivity in graphs whenever a vertex is subverted the entire closed neighborhood of the vertex is deleted from the graph. The minimum number of vertices whose subversion results in an empty, complete, or disconnected subgraph is called the neighbor-connectivity of the graph. Gunther, Hartnell, and Nowakowski have shown that for any graph, neighbor-connectivity is bounded above by κ. Doty has sharpened that bound in abelian Cayley graphs to approximately (1/2)κ. The...
An edge-coloured graph G is rainbow-connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow-connected. In this paper we show some new bounds for the rainbow connection number of graphs depending on the minimum degree and other graph parameters. Moreover, we discuss sharpness of some of these bounds.
Let be an symmetric, irreducible, and nonnegative matrix whose eigenvalues are . In this paper we derive several lower and upper bounds, in particular on and , but also, indirectly, on . The bounds are in terms of the diagonal entries of the group generalized inverse, , of the singular and irreducible M-matrix . Our starting point is a spectral resolution for . We consider the case of equality in some of these inequalities and we apply our results to the algebraic connectivity of undirected...