Separating plane convex sets.
We describe some new applications of nonabelian pq-groups to construction problems in Graph Theory. The constructions include the smallest known trivalent graph of girth 17, the smallest known regular graphs of girth five for several degrees, along with four edge colorings of complete graphs that improve lower bounds on classical Ramsey numbers.
A graph is k-degenerate if its vertices can be successively deleted so that when deleted, each has degree at most k. These graphs were introduced by Lick and White in 1970 and have been studied in several subsequent papers. We present sharp bounds on the diameter of maximal k-degenerate graphs and characterize the extremal graphs for the upper bound. We present a simple characterization of the degree sequences of these graphs and consider related results. Considering edge coloring, we conjecture...