Page 1

Displaying 1 – 15 of 15

Showing per page

The Chvátal-Erdős condition and 2-factors with a specified number of components

Guantao Chen, Ronald J. Gould, Ken-ichi Kawarabayashi, Katsuhiro Ota, Akira Saito, Ingo Schiermeyer (2007)

Discussiones Mathematicae Graph Theory

Let G be a 2-connected graph of order n satisfying α(G) = a ≤ κ(G), where α(G) and κ(G) are the independence number and the connectivity of G, respectively, and let r(m,n) denote the Ramsey number. The well-known Chvátal-Erdös Theorem states that G has a hamiltonian cycle. In this paper, we extend this theorem, and prove that G has a 2-factor with a specified number of components if n is sufficiently large. More precisely, we prove that (1) if n ≥ k·r(a+4, a+1), then G has a 2-factor with k components,...

The ramsey number for theta graph versus a clique of order three and four

M.S.A. Bataineh, M.M.M. Jaradat, M.S. Bateeha (2014)

Discussiones Mathematicae Graph Theory

For any two graphs F1 and F2, the graph Ramsey number r(F1, F2) is the smallest positive integer N with the property that every graph on at least N vertices contains F1 or its complement contains F2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(θn,Km) for m = 2, 3, 4 and n > m. More specifically, we establish that r(θn,Km) = (n − 1)(m − 1) + 1 for m = 3, 4 and n > m

The Ramsey number r(C₇,C₇,C₇)

Ralph Faudree, Annette Schelten, Ingo Schiermeyer (2003)

Discussiones Mathematicae Graph Theory

Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.

The size of minimum 3-trees: cases 0 and 1 mod 12

Jorge L. Arocha, Joaquín Tey (2003)

Discussiones Mathematicae Graph Theory

A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-coloring of its vertex set there is a heterochromatic triple and the hypergraph has the minimum possible number of triples. There is a conjecture that the number of triples in such 3-tree is ⎡(n(n-2))/3⎤ for any number of vertices n. Here we give a proof of this conjecture for any n ≡ 0,1 mod 12.

The upper domination Ramsey number u(4,4)

Tomasz Dzido, Renata Zakrzewska (2006)

Discussiones Mathematicae Graph Theory

The upper domination Ramsey number u(m,n) is the smallest integer p such that every 2-coloring of the edges of Kₚ with color red and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of Kₚ induced by blue and red edges, respectively; Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that u(4,4) ≤ 15.

Three edge-coloring conjectures

Richard H. Schelp (2002)

Discussiones Mathematicae Graph Theory

The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.

Topological dynamics of unordered Ramsey structures

Moritz Müller, András Pongrácz (2015)

Fundamenta Mathematicae

We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow M ( G ) of the automorphism group G of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of M ( G ) . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and G is amenable, then M ( G ) admits a unique invariant...

Turán's problem and Ramsey numbers for trees

Zhi-Hong Sun, Lin-Lin Wang, Yi-Li Wu (2015)

Colloquium Mathematicae

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

Two variants of the size Ramsey number

Andrzej Kurek, Andrzej Ruciński (2005)

Discussiones Mathematicae Graph Theory

Given a graph H and an integer r ≥ 2, let G → (H,r) denote the Ramsey property of a graph G, that is, every r-coloring of the edges of G results in a monochromatic copy of H. Further, let m ( G ) = m a x F G | E ( F ) | / | V ( F ) | and define the Ramsey density m i n f ( H , r ) as the infimum of m(G) over all graphs G such that G → (H,r). In the first part of this paper we show that when H is a complete graph Kₖ on k vertices, then m i n f ( H , r ) = ( R - 1 ) / 2 , where R = R(k;r) is the classical Ramsey number. As a corollary we derive a new proof of the result credited to Chvatál...

Currently displaying 1 – 15 of 15

Page 1