A census of vertices by generations in regular tessellations of the plane.
We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...
An injective map from the vertex set of a graph G-its order may not be finite-to the set of all natural numbers is called an arithmetic (a geometric) labeling of G if the map from the edge set which assigns to each edge the sum (product) of the numbers assigned to its ends by the former map, is injective and the range of the latter map forms an arithmetic (a geometric) progression. A graph is called arithmetic (geometric) if it admits an arithmetic (a geometric) labeling. In this article, we show...