The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In 1968 Erdős and Hajnal introduced shift graphs as graphs whose vertices are the k-element subsets of [n] = 1,...,n (or of an infinite cardinal κ ) and with two k-sets and joined if . They determined the chromatic number of these graphs. In this paper we extend this definition and study the chromatic number of graphs defined similarly for other types of mutual position with respect to the underlying ordering. As a consequence of our result, we show the existence of a graph with interesting...
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for...
Currently displaying 1 –
2 of
2