Approximation algorithms for some graph partitioning problems.
In this paper, a graph partitioning problem that arises in the design of SONET/SDH networks is defined and formalized. Approximation algorithms with performance guarantees are presented. To solve this problem efficiently in practice, fast greedy algorithms and a tabu-search method are proposed and analyzed by means of an experimental study.
In this paper, a graph partitioning problem that arises in the design of SONET/SDH networks is defined and formalized. Approximation algorithms with performance guarantees are presented. To solve this problem efficiently in practice, fast greedy algorithms and a tabu-search method are proposed and analyzed by means of an experimental study.
A graph G of order n is called arbitrarily vertex decomposable if for each sequence (a₁,...,aₖ) of positive integers such that a₁+...+aₖ = n there exists a partition (V₁,...,Vₖ) of the vertex set of G such that for each i ∈ 1,...,k, induces a connected subgraph of G on vertices. D. Barth and H. Fournier showed that if a tree T is arbitrarily vertex decomposable, then T has maximum degree at most 4. In this paper we give a complete characterization of arbitrarily vertex decomposable caterpillars...