The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Light classes of generalized stars in polyhedral maps on surfaces

Stanislav Jendrol', Heinz-Jürgen Voss (2004)

Discussiones Mathematicae Graph Theory

A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. S i denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let be a surface of Euler characteristic χ() ≤ 0, and m():= ⎣(5 + √49-24χ( ))/2⎦. We prove: (1) Let k ≥ 1, d ≥ m() be integers. Each polyhedral map G on with a k-path (on k vertices) contains a k-path of maximum degree ≤ d in G or a generalized s-star T, s ≤ m(), on d + 2- m() vertices...

Locally regular graphs

Bohdan Zelinka (2000)

Mathematica Bohemica

A graph G is called locally s -regular if the neighbourhood of each vertex of G induces a subgraph of G which is regular of degree s . We study graphs which are locally s -regular and simultaneously regular of degree r .

Currently displaying 1 – 5 of 5

Page 1