The search session has expired. Please query the service again.
Let be the greatest odd integer less than or equal to . In this paper we provide explicit formulae to compute -graded Betti numbers of the circulant graphs . We do this by showing that this graph is the product (or join) of the cycle by itself, and computing Betti numbers of . We also discuss whether such a graph (more generally, ) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or .
Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades.
The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in .At the end of this short note I briefly recall the work of François Jaeger on circle graphs.
Let be a weighted hypergraph with edges of size at most 2. Bollobás and Scott conjectured that admits a bipartition such that each vertex class meets edges of total weight at least , where is the total weight of edges of size and is the maximum weight of an edge of size 1. In this paper, for positive integer weighted hypergraph (i.e., multi-hypergraph), we show that there exists a bipartition of such that each vertex class meets edges of total weight at least , where is the number...
Currently displaying 1 –
7 of
7