Page 1

Displaying 1 – 9 of 9

Showing per page

Backbone colorings along stars and matchings in split graphs: their span is close to the chromatic number

Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)

Discussiones Mathematicae Graph Theory

We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers. The main outcome...

Balanced problems on graphs with categorization of edges

Štefan Berežný, Vladimír Lacko (2003)

Discussiones Mathematicae Graph Theory

Suppose a graph G = (V,E) with edge weights w(e) and edges partitioned into disjoint categories S₁,...,Sₚ is given. We consider optimization problems on G defined by a family of feasible sets (G) and the following objective function: L ( D ) = m a x 1 i p ( m a x e S i D w ( e ) - m i n e S i D w ( e ) ) For an arbitrary number of categories we show that the L₅-perfect matching, L₅-a-b path, L₅-spanning tree problems and L₅-Hamilton cycle (on a Halin graph) problem are NP-complete. We also summarize polynomiality results concerning above objective functions for arbitrary...

Block decomposition approach to compute a minimum geodetic set

Tınaz Ekim, Aysel Erey (2014)

RAIRO - Operations Research - Recherche Opérationnelle

In this paper, we develop a divide-and-conquer approach, called block decomposition, to solve the minimum geodetic set problem. This provides us with a unified approach for all graphs admitting blocks for which the problem of finding a minimum geodetic set containing a given set of vertices (g-extension problem) can be efficiently solved. Our method allows us to derive linear time algorithms for the minimum geodetic set problem in (a proper superclass of) block-cacti and monopolar chordal graphs....

Bootstrap clustering for graph partitioning

Philippe Gambette, Alain Guénoche (2011)

RAIRO - Operations Research - Recherche Opérationnelle

Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...

Bootstrap clustering for graph partitioning∗

Philippe Gambette, Alain Guénoche (2012)

RAIRO - Operations Research

Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...

Bounds of graph parameters for global constraints

Nicolas Beldiceanu, Thierry Petit, Guillaume Rochart (2006)

RAIRO - Operations Research - Recherche Opérationnelle

This article presents a basic scheme for deriving systematically a filtering algorithm from the graph properties based representation of global constraints. This scheme is based on the bounds of the graph parameters used in the description of a global constraint. The article provides bounds for the most common used graph parameters.

Bounds of graph parameters for global constraints

Nicolas Beldiceanu, Thierry Petit, Guillaume Rochart (2007)

RAIRO - Operations Research

This article presents a basic scheme for deriving systematically a filtering algorithm from the graph properties based representation of global constraints. This scheme is based on the bounds of the graph parameters used in the description of a global constraint. The article provides bounds for the most common used graph parameters.

Currently displaying 1 – 9 of 9

Page 1