Page 1

Displaying 1 – 6 of 6

Showing per page

Implementation of directed acyclic word graph

Miroslav Balík (2002)

Kybernetika

An effective implementation of a Directed Acyclic Word Graph (DAWG) automaton is shown. A DAWG for a text T is a minimal automaton that accepts all substrings of a text T , so it represents a complete index of the text. While all usual implementations of DAWG needed about 30 times larger storage space than was the size of the text, here we show an implementation that decreases this requirement down to four times the size of the text. The method uses a compression of DAWG elements, i. e. vertices,...

Induced Acyclic Tournaments in Random Digraphs: Sharp Concentration, Thresholds and Algorithms

Kunal Dutta, C.R. Subramanian (2014)

Discussiones Mathematicae Graph Theory

Given a simple directed graph D = (V,A), let the size of the largest induced acyclic tournament be denoted by mat(D). Let D ∈ D(n, p) (with p = p(n)) be a random instance, obtained by randomly orienting each edge of a random graph drawn from Ϟ(n, 2p). We show that mat(D) is asymptotically almost surely (a.a.s.) one of only 2 possible values, namely either b*or b* + 1, where b* = ⌊2(logrn) + 0.5⌋ and r = p−1. It is also shown that if, asymptotically, 2(logrn) + 1 is not within a distance of w(n)/(ln...

Interval Incidence Coloring of Subcubic Graphs

Anna Małafiejska, Michał Małafiejski (2017)

Discussiones Mathematicae Graph Theory

In this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is NP-complete, and they asked if Xii(G) ≤ 2Δ(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with Δ(G) = 3.

Currently displaying 1 – 6 of 6

Page 1