Neighborhoods in line graphs
Page 1
Ľubomír Šoltés (1990)
Acta Universitatis Carolinae. Mathematica et Physica
Bohdan Zelinka (1989)
Mathematica Slovaca
Věra Trnková (1972)
Commentationes Mathematicae Universitatis Carolinae
Marek Boguszak, Svatopluk Poljak, Jiří Tůma (1976)
Commentationes Mathematicae Universitatis Carolinae
H. Maehara (1989)
Discrete & computational geometry
Václav Koubek, Vojtěch Rödl (1985)
Commentationes Mathematicae Universitatis Carolinae
C. Lenormand, J. F. Perrot (1970)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Ioan Tomescu (1973)
Mathématiques et Sciences Humaines
Dans cette note on démontre la conjecture d'Abelson et Rosenberg sur le degré maximal de déséquilibre d'un graphe à n sommets et on caractérise ces graphes maximaux.
Michał Adamaszek (2014)
Discussiones Mathematicae Graph Theory
A property of n-vertex graphs is called evasive if every algorithm testing this property by asking questions of the form “is there an edge between vertices u and v” requires, in the worst case, to ask about all pairs of vertices. Most “natural” graph properties are either evasive or conjectured to be such, and of the few examples of nontrivial nonevasive properties scattered in the literature the smallest one has n = 6. We exhibit a nontrivial, nonevasive property of 5-vertex graphs and show that...
Mohar, Bojan, Škrekovski, Riste (2001)
The Electronic Journal of Combinatorics [electronic only]
Jan Kratochvíl, Jiří Matoušek (1989)
Commentationes Mathematicae Universitatis Carolinae
Page 1