Independence complexes and edge covering complexes via Alexander duality.
Page 1 Next
Kawamura, Kazuhiro (2011)
The Electronic Journal of Combinatorics [electronic only]
Jan Kratochvíl, Jaroslav Nešetřil (1990)
Commentationes Mathematicae Universitatis Carolinae
Gutman, Ivan (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Juraj Bosák (1983)
Mathematica Slovaca
San Ming Zhou (2000)
Czechoslovak Mathematical Journal
Let be an integer-valued function defined on the vertex set of a graph . A subset of is an -dominating set if each vertex outside is adjacent to at least vertices in . The minimum number of vertices in an -dominating set is defined to be the -domination number, denoted by . In a similar way one can define the connected and total -domination numbers and . If for all vertices , then these are the ordinary domination number, connected domination number and total domination...
Zoran S. Radosavljević (1981)
Publications de l'Institut Mathématique
Jaroslav Nešetřil (1978)
Mathematica Slovaca
Silva, Fernando C. (1996)
Portugaliae Mathematica
G. Kreweras (1970)
Mathématiques et Sciences Humaines
San Ming Zhou (1998)
Czechoslovak Mathematical Journal
Let be a graph with order , size and component number . For each between and , let be the family of spanning -edge subgraphs of with exactly components. For an integer-valued graphical invariant , if is an adjacent edge transformation (AET) implies , then is said to be continuous with respect to AET. Similarly define the continuity of with respect to simple edge transformation (SET). Let and be the invariants defined by , . It is proved that both and interpolate...
Bohdan Zelinka (1975)
Matematický časopis
Bohdan Zelinka (1973)
Matematický časopis
Bohdan Zelinka (1975)
Matematický časopis
Bohdan Zelinka (1975)
Matematický časopis
Bohdan Zelinka (1976)
Mathematica Slovaca
Zbigniew Pałka (1982)
Colloquium Mathematicae
Robert L. Hemminger (1971)
Czechoslovak Mathematical Journal
Bohdan Zelinka (1976)
Czechoslovak Mathematical Journal
Věra Trnková (1984)
Commentationes Mathematicae Universitatis Carolinae
Věra Trnková, Václav Koubek (1978)
Commentationes Mathematicae Universitatis Carolinae
Page 1 Next