Schubert and Grothendieck: a bidecennial balance. (Schubert et Grothendieck: un bilan bidécennal.)
The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.
Étant donnés un système de racines d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de .
The goal of our work is to study the spaces of primitive elements of some combinatorial Hopf algebras, whose underlying vector spaces admit linear basis labelled by subsets of the set of maps between finite sets. In order to deal with these objects we introduce the notion of shuffle algebras, which are coloured algebras where composition is not always defined. We define bialgebras in this framework and compute the subpaces of primitive elements associated to them. These spaces of primitive elements...
Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes. We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].
On montre que les composantes irréductibles du lieu singulier d’une variété de Schubert dans associée à une permutation covexillaire, sont paramétrées par certains des points coessentiels du graphe de la permutation. On donne une description explicite de ces composantes et l’on décrit la singularité le long de chacune d’entre elles.