Displaying 441 – 460 of 595

Showing per page

RSK bases and Kazhdan-Lusztig cells

K. N. Raghavan, Preena Samuel, K. V. Subrahmanyam (2012)

Annales de l’institut Fourier

From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are constructed for certain quotients by two-sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over various base rings, of the general linear group and representation theory, both ordinary and modular, of the symmetric group are discussed.

Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces

László Fehér, Richárd Rimányi (2003)

Open Mathematics

The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.

Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines

Roland Bacher, Pierre de La Harpe, Boris Venkov (1999)

Annales de l'institut Fourier

Étant donnés un système de racines R d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à R . Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de R .

Currently displaying 441 – 460 of 595