Displaying 421 – 440 of 3894

Showing per page

Biframe compactifications

Anneliese Schauerte (1993)

Commentationes Mathematicae Universitatis Carolinae

Compactifications of biframes are defined, and characterized internally by means of strong inclusions. The existing description of the compact, zero-dimensional coreflection of a biframe is used to characterize all zero-dimensional compactifications, and a criterion identifying them by their strong inclusions is given. In contrast to the above, two sufficient conditions and several examples show that the existence of smallest biframe compactifications differs significantly from the corresponding...

Bi-ideals in Clifford ordered semigroup

Kalyan Hansda (2013)

Discussiones Mathematicae - General Algebra and Applications

In this paper we characterize both the Clifford and left Clifford ordered semigroups by their bi-ideals and quasi-ideals. Also we characterize principal bi-ideal generated by an ordered idempotent in a completely regular ordered semigroup.

Binary and ternary relations

Vítězslav Novák, Miroslav Novotný (1992)

Mathematica Bohemica

Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.

Bipartite pseudo MV-algebras

Grzegorz Dymek (2006)

Discussiones Mathematicae - General Algebra and Applications

A bipartite pseudo MV-algebra A is a pseudo MV-algebra such that A = M ∪ M ̃ for some proper ideal M of A. This class of pseudo MV-algebras, denoted BP, is investigated. The class of pseudo MV-algebras A such that A = M ∪ M ̃ for all maximal ideals M of A, denoted BP₀, is also studied and characterized.

BL-algebras of basic fuzzy logic.

Esko Turunen (1999)

Mathware and Soft Computing

BL-algebras [Hajek] rise as Lindenbaum algebras from certain logical axioms familiar in fuzzy logic framework. BL-algebras are studied by means of deductive systems and co-annihilators. Duals of many theorems known to hold in MV-algebra theory remain valid for BL-algebras, too.

Bohr compactifications of discrete structures

Joan Hart, Kenneth Kunen (1999)

Fundamenta Mathematicae

We prove the following theorem: Given a⊆ω and 1 α < ω 1 C K , if for some η < 1 and all u ∈ WO of length η, a is Σ α 0 ( u ) , then a is Σ α 0 .We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: Σ 1 1 -Turing-determinacy implies the existence of 0 .

Currently displaying 421 – 440 of 3894