Displaying 81 – 100 of 152

Showing per page

Direct summands and retract mappings of generalized M V -algebras

Ján Jakubík (2008)

Czechoslovak Mathematical Journal

In the present paper we deal with generalized M V -algebras ( G M V -algebras, in short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors, G M V -algebras can be obtained by a truncation construction from lattice ordered groups. We investigate direct summands and retract mappings of G M V -algebras. The relations between G M V -algebras and lattice ordered groups are essential for this investigation.

Direct summands of Goldie extending elements in modular lattices

Rupal Shroff (2022)

Mathematica Bohemica

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.

Directoid groups

Barry J. Gardner, Michael M. Parmenter (2008)

Czechoslovak Mathematical Journal

We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups.

Directoids with an antitone involution

Ivan Chajda, Miroslav Kolařík (2007)

Commentationes Mathematicae Universitatis Carolinae

We investigate -directoids which are bounded and equipped by a unary operation which is an antitone involution. Hence, a new operation can be introduced via De Morgan laws. Basic properties of these algebras are established. On every such an algebra a ring-like structure can be derived whose axioms are similar to that of a generalized boolean quasiring. We introduce a concept of symmetrical difference and prove its basic properties. Finally, we study conditions of direct decomposability of directoids...

Directoids with sectionally antitone involutions and skew MV-algebras

Ivan Chajda, Miroslav Kolařík (2007)

Mathematica Bohemica

It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras.

Directoids with sectionally switching involutions

Ivan Chajda (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

It is shown that every directoid equipped with sectionally switching mappings can be represented as a certain implication algebra. Moreover, if the directoid is also commutative, the corresponding implication algebra is defined by four simple identities.

Discriminator order algebras

Ivan Chajda (2008)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We prove that an order algebra assigned to a bounded poset with involution is a discriminator algebra.

Discriminator varieties of Boolean algebras with residuated operators

Peter Jipsen (1993)

Banach Center Publications

The theory of discriminator algebras and varieties has been investigated extensively, and provides us with a wealth of information and techniques applicable to specific examples of such algebras and varieties. Here we give several such examples for Boolean algebras with a residuated binary operator, abbreviated as r-algebras. More specifically, we show that all finite r-algebras, all integral r-algebras, all unital r-algebras with finitely many elements below the unit, and all commutative residuated...

Discussion of the structure of uninorms

Paweł Drygaś (2005)

Kybernetika

The paper deals with binary operations in the unit interval. We investigate connections between families of triangular norms, triangular conorms, uninorms and some decreasing functions. It is well known, that every uninorm is build by using some triangular norm and some triangular conorm. If we assume, that uninorm fulfils additional assumptions, then this triangular norm and this triangular conorm have to be ordinal sums. The intervals in ordinal sum are depending on the set of values of a decreasing...

Disjoint sequences in Boolean algebras

Ján Jakubík (1998)

Mathematica Bohemica

We deal with the system Conv B of all sequential convergences on a Boolean algebra B . We prove that if α is a sequential convergence on B which is generated by a set of disjoint sequences and if β is any element of Conv B , then the join α β exists in the partially ordered set Conv B . Further we show that each interval of Conv B is a Brouwerian lattice.

Currently displaying 81 – 100 of 152