The MacNeille completion of the poset of partial injective functions.
The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
C. Berger claimed to have constructed an -operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.
T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the -propositional calculus, denoted by , is introduced in terms of the binary connectives (implication), (standard implication), (conjunction), (disjunction) and the unary ones (negation) and , (generalized Moisil operators). It is proved that belongs to the class of standard systems of implicative...
The niche graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if N+D(x) ∩ N+D(y) ≠ ∅ or N−D(x) ∩ N−D(y) ≠ ∅, where N+D(x) (resp. N−D(x)) is the set of out-neighbors (resp. in-neighbors) of x in D. A digraph D = (V,A) is called a semiorder (or a unit interval order ) if there exist a real-valued function f : V → R on the set V and a positive real number δ ∈ R such that (x, y) ∈ A if and only if...
We study local interpolation properties and local supremum properties for a Boolean algebra. In particular, we present a new condition that is sufficient for the Nikodym property.
Let be an Archimedean partially ordered ring in which the square of every element is positive, and the set of all nilpotent elements of . It is shown that is the unique nil radical of , and that is locally nilpotent and even nilpotent with exponent at most when is 2-torsion-free. is without non-zero nilpotents if and only if it is 2-torsion-free and has zero annihilator. The results are applied on partially ordered rings in which every element is expressed as with positive ,...
There is a conjecture of Vaught [17] which states: Without The Generalized Continuum Hypothesis one can prove the existence of a complete theory with exactly nonisomorphic, denumerable models. In this paper we show that there is no such theory in the class of complete extensions of the theory of Boolean algebras. More precisely, any complete extension of the theory of Boolean algebras has either 1 or nonisomorphic, countable models. Thus we answer this conjecture in the negative for any complete...