On the definition of a Lachlan semilattice.
We maximize the total height of order ideals in direct products of finitely many finite chains. We also consider several order ideals simultaneously. As a corollary, a shifting property of some integer sequences, including digit sum sequences, is derived.
Let be the lexicographic sum of finite ordered sets over a finite ordered set . For some we can give a formula for the jump number of in terms of the jump numbers of and , that is, , where denotes the jump number of an ordered set . We first show that , where denotes the width of an ordered set . Consequently, if is a Dilworth ordered set, that is, , then the formula holds. We also show that it holds again if is bipartite. Finally, we prove that the lexicographic sum of...
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups are studied in respect of formation of lattices and sublattices of . It is proved that the collections of all pronormal subgroups of and S do not form sublattices of respective and , whereas the collection of all pronormal subgroups of a dicyclic group is a sublattice of . Furthermore, it is shown that and ) are lower semimodular lattices.
We prove that every clone of operations on a finite set , if it contains a Malcev operation, is finitely related – i.e., identical with the clone of all operations respecting for some finitary relation over . It follows that for a fixed finite set , the set of all such Malcev clones is countable. This completes the solution of a problem that was first formulated in 1980, or earlier: how many Malcev clones can finite sets support? More generally, we prove that every finite algebra with few...
The main result of the paper is that for a circular element c in a C*-probability space, is an R-diagonal pair in the sense of Nica and Speicher for every n = 1,2,... The coefficients of the R-series are found to be the generalized Catalan numbers of parameter n-1.