Representations of ordered semigroups and lattices by binary relations
In this paper we represent every lattice by subgroups of free groups using the concept of the homotopy group of a graph.
We investigate the congruence lattices of lattices in the varieties . Our approach is to represent congruences by open sets of suitable topological spaces. We introduce some special separation properties and show that for different n the lattices in have different congruence lattices.
On introduit une opérade anticyclique définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari en construisant un isomorphisme entre et le groupe de Grothendieck de la catégorie qui envoie la base de sur les classes des modules projectifs et qui transforme la structure anticyclique de en la transformation de Coxeter de la catégorie dérivée de . La dualité...
The aim of this paper is to characterize pairs (L, A), where L is a finite lattice and A a finite algebra, such that the subalgebra lattice of A is isomorphic to L. Next, necessary and sufficient conditions are found for pairs of finite algebras (of possibly distinct types) to have isomorphic subalgebra lattices. Both of these characterizations are particularly simple in the case of distributive subalgebra lattices. We do not restrict our attention to total algebras only, but we consider the more...