Extenseurs
We study the integral quaternions and the integral octonions along the combinatorics of the -cell, a uniform polytope with the symmetry , and the Gosset polytope with the symmetry . We identify the set of the unit integral octonions or quaternions as a Gosset polytope or a -cell and describe the subsets of integral numbers having small length as certain combinations of unit integral numbers according to the or actions on the or the -cell, respectively. Moreover, we show that each...
In the present paper we generalize a result of a theorem of J. Jakubík concerning graph automorphisms of lattices to the case of multilattices of locally finite length.
Nous présentons une extension de la théorie des implications entre attributs binaires aux implications partielles. A partir de données expérimentales on s'intéresse non seulement aux implications (globales), mais aussi aux «implications avec quelques contre exemples». Les implications partielles offrent une possibilité d'extraire des informations supplémentaires. Elles permettent de «modéliser» la fréquence relative d'une implication, non-valide pour toutes les données, et donnent par conséquent...
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2D-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2D-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
If element of a lattice effect algebra is central, then the interval is a lattice effect algebra with the new top element and with inherited partial binary operation . It is a known fact that if the set of central elements of is an atomic Boolean algebra and the supremum of all atoms of in equals to the top element of , then is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means that if there exists a MacNeille completion of which is its extension...
We prove that every modular function on a multilattice with values in a topological Abelian group generates a uniformity on which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of .
Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.