Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Direct summands of Goldie extending elements in modular lattices

Rupal Shroff (2022)

Mathematica Bohemica

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.

Domain representability of C p ( X )

Harold Bennett, David Lutzer (2008)

Fundamenta Mathematicae

Let C p ( X ) be the space of continuous real-valued functions on X, with the topology of pointwise convergence. We consider the following three properties of a space X: (a) C p ( X ) is Scott-domain representable; (b) C p ( X ) is domain representable; (c) X is discrete. We show that those three properties are mutually equivalent in any normal T₁-space, and that properties (a) and (c) are equivalent in any completely regular pseudo-normal space. For normal spaces, this generalizes the recent result of Tkachuk that C p ( X ) is...

Domain-representable spaces

Harold Bennett, David Lutzer (2006)

Fundamenta Mathematicae

We study domain-representable spaces, i.e., spaces that can be represented as the space of maximal elements of some continuous directed-complete partial order (= domain) with the Scott topology. We show that the Michael and Sorgenfrey lines are of this type, as is any subspace of any space of ordinals. We show that any completely regular space is a closed subset of some domain-representable space, and that if X is domain-representable, then so is any G δ -subspace of X. It follows that any Čech-complete...

Currently displaying 21 – 38 of 38

Previous Page 2