Displaying 21 – 40 of 41

Showing per page

Prime ideals in 0-distributive posets

Vinayak Joshi, Nilesh Mundlik (2013)

Open Mathematics

In the first section of this paper, we prove an analogue of Stone’s Theorem for posets satisfying DCC by using semiprime ideals. We also prove the existence of prime ideals in atomic posets in which atoms are dually distributive. Further, it is proved that every maximal non-dense (non-principal) ideal of a 0-distributive poset (meet-semilattice) is prime. The second section focuses on the characterizations of (minimal) prime ideals in pseudocomplemented posets. The third section deals with the generalization...

Prime ideals in the lattice of additive induced-hereditary graph properties

Amelie J. Berger, Peter Mihók (2003)

Discussiones Mathematicae Graph Theory

An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove that the prime ideals of the lattice of all additive induced-hereditary properties are divided into two groups,...

Primeness and semiprimeness in posets

Vilas S. Kharat, Khalid A. Mokbel (2009)

Mathematica Bohemica

The concept of a semiprime ideal in a poset is introduced. Characterizations of semiprime ideals in a poset P as well as characterizations of a semiprime ideal to be prime in P are obtained in terms of meet-irreducible elements of the lattice of ideals of P and in terms of maximality of ideals. Also, prime ideals in a poset are characterized.

Primes, coprimes and multiplicative elements

Melvin F. Janowitz, Robert C. Powers, Thomas Riedel (1999)

Commentationes Mathematicae Universitatis Carolinae

The purpose of this paper is to study conditions under which the restriction of a certain Galois connection on a complete lattice yields an isomorphism from a set of prime elements to a set of coprime elements. An important part of our study involves the set on which the way-below relation is multiplicative.

Currently displaying 21 – 40 of 41