Displaying 601 – 620 of 975

Showing per page

Orthomodular lattices and closure operations in ordered vector spaces

Jan Florek (2010)

Banach Center Publications

On a non-trivial partially ordered real vector space (V,≤) the orthogonality relation is defined by incomparability and ζ(V,⊥) is a complete lattice of double orthoclosed sets. We say that A ⊆ V is an orthogonal set when for all a,b ∈ A with a ≠ b, we have a ⊥ b. In our earlier papers we defined an integrally open ordered vector space and two closure operations A → D(A) and A A . It was proved that V is integrally open iff D ( A ) = A for every orthogonal set A ⊆ V. In this paper we generalize this result. We...

Partial dcpo’s and some applications

Zhao Dongsheng (2012)

Archivum Mathematicum

We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces X , the corresponding partial dcpo’s of continuous real valued functions on X are continuous partial dcpos; (iii) if a space X is Hausdorff compact, the lattice of all S-lower semicontinuous functions on X is the dcpo-completion of that of continuous real valued...

Perfect compactifications of frames

Dharmanand Baboolal (2011)

Czechoslovak Mathematical Journal

Perfect compactifications of frames are introduced. It is shown that the Stone-Čech compactification is an example of such a compactification. We also introduce rim-compact frames and for such frames we define its Freudenthal compactification, another example of a perfect compactification. The remainder of a rim-compact frame in its Freudenthal compactification is shown to be zero-dimensional. It is shown that with the assumption of the Boolean Ultrafilter Theorem the Freudenthal compactification...

Currently displaying 601 – 620 of 975