On normality relation and its generalization on lattices
F. van Gool [Comment. Math. Univ. Carolin. 33 (1992), 505–523] has introduced the concept of lower semicontinuity for functions with values in a quasi-uniform space . This note provides a purely topological view at the basic ideas of van Gool. The lower semicontinuity of van Gool appears to be just the continuity with respect to the topology generated by the quasi-uniformity , so that many of his preparatory results become consequences of standard topological facts. In particular, when the order...
For a topological space , let denote the set of all closed subsets in , and let denote the set of all continuous maps . A family is called reflexive if there exists such that for every . Every reflexive family of closed sets in space forms a sub complete lattice of the lattice of all closed sets in . In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed...
The aim of the paper is to show that if S(G) is distributive, and also G satisfies some additional condition, then the union of any two subgroupoids of G is also a subgroupoid (intuitively, G has to be in some sense a unary algebra).