Displaying 141 – 160 of 966

Showing per page

Completion of partially ordered sets

Sergey A. Solovyov (2006)

Discussiones Mathematicae - General Algebra and Applications

The paper considers a generalization of the standard completion of a partially ordered set through the collection of all its lower sets.

Conditions under which the least compactification of a regular continuous frame is perfect

Dharmanand Baboolal (2012)

Czechoslovak Mathematical Journal

We characterize those regular continuous frames for which the least compactification is a perfect compactification. Perfect compactifications are those compactifications of frames for which the right adjoint of the compactification map preserves disjoint binary joins. Essential to our characterization is the construction of the frame analog of the two-point compactification of a locally compact Hausdorff space, and the concept of remainder in a frame compactification. Indeed, one of the characterizations...

Congruence kernels of distributive PJP-semilattices

S. N. Begum, Abu Saleh Abdun Noor (2011)

Mathematica Bohemica

A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.

Congruence lattices of intransitive G-Sets and flat M-Sets

Steve Seif (2013)

Commentationes Mathematicae Universitatis Carolinae

An M-Set is a unary algebra X , M whose set M of operations is a monoid of transformations of X ; X , M is a G-Set if M is a group. A lattice L is said to be represented by an M-Set X , M if the congruence lattice of X , M is isomorphic to L . Given an algebraic lattice L , an invariant Π ( L ) is introduced here. Π ( L ) provides substantial information about properties common to all representations of L by intransitive G-Sets. Π ( L ) is a sublattice of L (possibly isomorphic to the trivial lattice), a Π -product lattice. A Π -product...

Currently displaying 141 – 160 of 966