Displaying 161 – 180 of 966

Showing per page

Congruences in ordered sets

Ivan Chajda, Václav Snášel (1998)

Mathematica Bohemica

A concept of congruence preserving upper and lower bounds in a poset P is introduced. If P is a lattice, this concept coincides with the notion of lattice congruence.

Congruences in ordered sets and LU compatible equivalences

Václav Snášel, Marek Jukl (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

A concept of equivalence preserving upper and lower bounds in a poset P is introduced. If P is a lattice, this concept coincides with the notion of lattice congruence.

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Currently displaying 161 – 180 of 966