On Riesz groups.
Let be an infinite cardinal. We denote by the collection of all -representable Boolean algebras. Further, let be the collection of all generalized Boolean algebras such that for each , the interval of belongs to . In this paper we prove that is a radical class of generalized Boolean algebras. Further, we investigate some related questions concerning lattice ordered groups and generalized -algebras.
In the present note we characterize finite lattices which are isomorphic to the congruence lattice of an abelian lattice ordered group.
We develop elementary methods of computing the monoid for a directly-finite regular ring . We construct a class of directly finite non-cancellative refinement monoids and realize them by regular algebras over an arbitrary field.
Let be an Archimedean -group. We denote by and the divisible hull of and the distributive radical of , respectively. In the present note we prove the relation . As an application, we show that if is Archimedean, then it is completely distributive if and only if it can be regularly embedded into a completely distributive vector lattice.
In this note we prove that there exists a Carathéodory vector lattice such that and . This yields that is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
In this paper we deal with the vector lattice of all elementary Carathéodory functions corresponding to a generalized Boolean algebra .
It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator where and are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost -algebras.
Let and be algebras of subsets of a set with , and denote by the set of all quasi-measure extensions of a given quasi-measure on to . We give some criteria for order boundedness of in , in the general case as well as for atomic . Order boundedness implies weak compactness of . We show that the converse implication holds under some assumptions on , and or alone, but not in general.
We show that the Bruschlinsky group with the winding order is a homomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the standard order of the adjacency matrices associated with the presentation.
Let and be algebras of subsets of a set with , and denote by the set of all quasi-measure extensions of a given quasi-measure on to . We show that is order bounded if and only if it is contained in a principal ideal in if and only if it is weakly compact and is contained in a principal ideal in . We also establish some criteria for the coincidence of the ideals, in , generated by and .
On a non-trivial partially ordered real vector space (V,≤) the orthogonality relation is defined by incomparability and ζ(V,⊥) is a complete lattice of double orthoclosed sets. We say that A ⊆ V is an orthogonal set when for all a,b ∈ A with a ≠ b, we have a ⊥ b. In our earlier papers we defined an integrally open ordered vector space and two closure operations A → D(A) and . It was proved that V is integrally open iff for every orthogonal set A ⊆ V. In this paper we generalize this result. We...