Completeness and continuity of lattice-seminorms
The notion of a half lc-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying Świerczkowski's representation theorem of lc-groups is constructed and studied.
In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to functions in . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...
In this paper, using the notion of upper sets, we introduced the notions of complicated BE-Algebras and gave some related properties on complicated, self-distributive and commutative BE-algebras. In a self-distributive and complicated BE-algebra, characterizations of ideals are obtained.
We investigate when a partially ordered semigroup (with various types of local units) is strongly Morita equivalent to a posemigroup from a given class of partially ordered semigroups. Necessary and sufficient conditions for such equivalence are obtained for a series of well-known classes of posemigroups. A number of sufficient conditions for several classes of naturally ordered posemigroups are also provided.
We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.