Characterizing ordered semigroups by means of intuitionistic fuzzy bi-ideals.
Bounded commutative residuated lattice ordered monoids (-monoids) are a common generalization of -algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative -monoids.
The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...
In this paper we prove that the system of all closed convex -subgroups of a convergence -group is a Brouwer lattice and that a similar result is valid for radical classes of convergence -groups.
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.
In this paper we investigate the possibility of a regular embedding of a lattice ordered group into a completely distributive vector lattice.
This paper deals with directly indecomposable direct factors of a directed set.