The Iséki-type characterization of certain regular ordered semigroups
We prove the –version of the Joly–Becker theorem: a skew field admits a –ordering of level iff it admits a –ordering of level for some (resp. all) odd . For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a –ordering of higher level also admits a –ordering of level . Every field that admits a –ordering of higher level admits a –ordering of level or
The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra that all of its squares are positive and satisfying the following property: Every continuous bilinear map from into an arbitrary Banach space such that whenever , satisfies the condition for all .
Let be an Archimedean partially ordered ring in which the square of every element is positive, and the set of all nilpotent elements of . It is shown that is the unique nil radical of , and that is locally nilpotent and even nilpotent with exponent at most when is 2-torsion-free. is without non-zero nilpotents if and only if it is 2-torsion-free and has zero annihilator. The results are applied on partially ordered rings in which every element is expressed as with positive ,...
The order topology (resp. the sequential order topology ) on a poset P is the topology that has as its closed sets those that contain the order limits of all their order convergent nets (resp. sequences). For a von Neumann algebra M we consider the following three posets: the self-adjoint part , the self-adjoint part of the unit ball , and the projection lattice P(M). We study the order topology (and the corresponding sequential variant) on these posets, compare the order topology to the other...
We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.