-компактность в -группах
We study the behaviour of ℵ-compactness, extent and Lindelöf number in lexicographic products of linearly ordered spaces. It is seen, in particular, that for the case that all spaces are bounded all these properties behave very well when taking lexicographic products. We also give characterizations of these notions for generalized ordered spaces.
In [1], Jakubík showed that the class of -interpolation lattice-ordered groups forms a radical class, but left open the question of whether the class forms a torsion class. In this paper, we show that this class does indeed form a torsion class.