Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Characterizing binary discriminator algebras

Ivan Chajda (2000)

Mathematica Bohemica

The concept of the (dual) binary discriminator was introduced by R. Halas, I. G. Rosenberg and the author in 1999. We study finite algebras having the (dual) discriminator as a term function. In particular, a simple characterization is obtained for such algebras with a majority term function.

Clausal relations and C-clones

Edith Vargas (2010)

Discussiones Mathematicae - General Algebra and Applications

We introduce a special set of relations called clausal relations. We study a Galois connection Pol-CInv between the set of all finitary operations on a finite set D and the set of clausal relations, which is a restricted version of the Galois connection Pol-Inv. We define C-clones as the Galois closed sets of operations with respect to Pol-CInv and describe the lattice of all C-clones for the Boolean case D = {0,1}. Finally we prove certain results about C-clones over a larger set.

Clones on regular cardinals

Martin Goldstern, Saharon Shelah (2002)

Fundamenta Mathematicae

We investigate the structure of the lattice of clones on an infinite set X. We first observe that ultrafilters naturally induce clones; this yields a simple proof of Rosenberg’s theorem: there are 2 2 λ maximal (= “precomplete”) clones on a set of size λ. The clones we construct do not contain all unary functions. We then investigate clones that do contain all unary functions. Using a strong negative partition theorem from pcf theory we show that for cardinals λ (in particular, for all successors of...

Commutation of operations and its relationship with Menger and Mann superpositions

Fedir M. Sokhatsky (2004)

Discussiones Mathematicae - General Algebra and Applications

The article considers a problem from Trokhimenko paper [13] concerning the study of abstract properties of commutations of operations and their connection with the Menger and Mann superpositions. Namely, abstract characterizations of some classes of operation algebras, whose signature consists of arbitrary families of commutations of operations, Menger and Mann superpositions and their various connections are found. Some unsolved problems are given at the end of the article.

Congruence preserving operations on the ring p 3

Cyril Gavala, Miroslav Ploščica, Ivana Varga (2023)

Mathematica Bohemica

We investigate the interval I ( p 3 ) in the lattice of clones on the ring p 3 between the clone of polynomial operations and the clone of congruence preserving operations. All clones in this interval are known and described by means of generators. In this paper, we characterize each of these clones by the property of preserving a small set of relations. These relations turn out to be in a close connection to commutators.

Conjugated algebras

Ivan Chajda (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We generalize the correspondence between basic algebras and lattices with section antitone involutions to a more general case where no lattice properties are assumed. These algebras are called conjugated if this correspondence is one-to-one. We get conditions for the conjugary of such algebras and introduce the induced relation. Necessary and sufficient conditions are given to indicated when the induced relation is a quasiorder which has “nice properties", e.g. the unary operations are antitone...

Convex sets in algebras

Radim Bělohlávek (2002)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Currently displaying 1 – 20 of 22

Page 1 Next