Displaying 81 – 100 of 202

Showing per page

k-Normalization and (k+1)-level inflation of varieties

Valerie Cheng, Shelly Wismath (2008)

Discussiones Mathematicae - General Algebra and Applications

Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety V, there is...

Linear identities in graph algebras

Agata Pilitowska (2009)

Commentationes Mathematicae Universitatis Carolinae

We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.

Maximal clones and maximal permutation groups

Péter P. Pálfy (2007)

Discussiones Mathematicae - General Algebra and Applications

A fundamental result in universal algebra is the theorem of Rosenberg describing the maximal subclones in the clone of all operations over a finite set. In group theory, the maximal subgroups of the symmetric groups are classified by the O'Nan-Scott Theorem. We shall explore the similarities and differences between these two analogous major results. In addition, we show that a primitive permutation group of diagonal type can be maximal in the symmetric group only if its socle is the direct product...

Modyfications of Csákány's Theorem

Ivan Chajda (2000)

Discussiones Mathematicae - General Algebra and Applications

Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.

Nd-solid varieties

Klaus Denecke, Prisana Glubudom (2007)

Discussiones Mathematicae - General Algebra and Applications

A non-deterministic hypersubstitution maps any operation symbol of a tree language of type τ to a set of trees of the same type, i.e. to a tree language. Non-deterministic hypersubstitutions can be extended to mappings which map tree languages to tree languages preserving the arities. We define the application of a non-deterministic hypersubstitution to an algebra of type τ and obtain a class of derived algebras. Non-deterministic hypersubstitutions can also be applied to equations of type τ. Formally,...

Currently displaying 81 – 100 of 202